Abstract
Oxidation of a Zircaloy cladding exposed to high-temperature steam is an important phenomenon in the safety analysis of CANDU reactors during a postulated loss-of-coolant accident (LOCA), since a Zircaloy/steam reaction is highly exothermic and results in hydrogen production. As part of a computational fluid dynamics (CFD) simulation of the CS28-2 high-temperature experiment for this accident analysis, two Zircaloy/steam reaction models based on a parabolic rate law are implemented in a commercial CFD code (CFX-10) through a user FORTRAN. It is confirmed that the present oxidation models for the CFX-10 reproduce the results of each empirical correlation in the verification tests well. Then the CFX-10 predictions of a temperature rise and hydrogen production due to Zircaloy/steam oxidation are compared with the results of the CS28-2 experiment. From these validation processes, it is shown that the Urbanic-Heidrick model, which is widely used in CANDU fuel channel codes, is also applicable to a CFX-10 simulation of Zircaloy/steam oxidation in a CANDU fuel channel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have