Abstract

Abstract A range of popular hybrid Reynolds-averaged Navier–Stokes -large eddy simulation (RANS-LES) methods are tested for a cavity and two labyrinth seal geometries using an in-house high-order computational fluid dynamics (CFD) code and a commercial CFD code. The models include the standard Spalart–Allmaras (SA) and Menter shear stress transport (SST) versions of delayed detached eddy simulation (DDES) and the Menter scale adaptive simulation (SAS) model. A recently formulated, enhanced, variant of SA-DDES presented in the literature and a new variant using the Menter SST model are also investigated. The latter modify the original definition of the subgrid length scale used in standard DDES based on local vorticity and strain. For all geometries, the meshes are considered to be hybrid RANS-LES adequate. Very low levels of resolved turbulence and quasi-two-dimensional flow fields are observed for the standard DDES and SAS models even for the test cases here that contain obstacles, sharp edges, and swirling flow. Similar findings are observed for both the commercial and in-house high-order CFD codes. For the cavity simulations, when using standard DDES and SAS, there is a significant under prediction of turbulent statistics compared with experimental measurements. The enhanced versions of DDES, on the other hand, show a significant improvement and resolve turbulent content over a wide range of scales. Improved agreement with experimental measurements is also observed for profiles of the vertical velocity component. For the first labyrinth seal geometry swirl velocities are more accurately captured by the enhanced DDES versions. For the second labyrinth seal geometry, the mass flow coefficient prediction using the enhanced models is significantly improved (up to 30%). Standard, industrially available hybrid RANS-LES models, when applied to the present canonical cases can produce little to no resolved turbulent content. The standard SA- and Menter-based DDES models can yield lower levels of eddy viscosity when compared to equivilent steady RANS simulations which means that they are not operating as RANS or LES. It is recommended that hybrid RANS-LES models should be extensively tested for specific flow configurations and that special care is exercised by CFD practitioners when using many of the popular hybrid RANS-LES models that are currently available in commercial CFD packages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.