Abstract
Self-consistent charge density functional tight binding (SCC-DFTB) is a promising method for hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of enzyme-catalyzed reactions. The acylation reaction of fatty acid amide hydrolase (FAAH), a promising drug target, was investigated by applying a SCC-DFTB/CHARMM27 scheme. Calculated potential energy barriers resulted in reasonable agreement with experiments for oleamide (OA) and oleoylmethyl ester (OME) substrates, outperforming previous calculations performed at the PM3/CHARMM22 level. Furthermore, the experimental preference of FAAH in hydrolyzing OA faster than OME was adequately reproduced by calculations. All these findings indicate that the SCC-DFTB/CHARMM27 approach can be successfully applied to mechanistic investigations of FAAH-catalyzed reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.