Abstract

BCC and FCC metals have different glass-forming abilities (GFA) and exhibit different characteristics during the glass transition. However, the structural origin of their different GFAs is still not clear. Here, we explored the structures of eight monatomic metallic glasses by combining molecular dynamics (MD) simulations and machine learning (ML). Our findings reveal that, despite their common long-range disordered atomic structure, metallic glasses can be further classified into two distinct categories indicating an underlying structural order within the disorder. Using machine learning, we found that BCC liquids can sample more diverse glass states than FCC liquids. Furthermore, glasses formed from BCC metals (GFFBs) exhibit a higher degree of disorder than glasses formed from FCC metals (GFFFs). These findings highlight the inherent differences between GFFFs and GFFBs, which help explain the different glass-forming abilities of FCC and BCC metals. Additionally, our results demonstrate the promising potential of computer vision and ML methods in exploring material structures. Classical molecular dynamics simulations were employed to generate configurations of GFFBs and GFFFs, and the simulations were performed using the LAMMPS code. Inter-atomic interactions were described using a classical embedded atom model (EAM) potential. The initial configuration of the model consists of 32,000 atoms in a three-dimensional (3D) cubic box with periodic boundary conditions applied in all three directions. For machine learning, we utilized an unsupervised machine learning method along with MobileNetV2 for classifying glass structures. Image entropy and image distances were used to measure the structural differences of the metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.