Abstract
Advanced copper and copper alloys, as significant engineering structural materials, have recently been extensively used in energy, electron, transportation, and aviation domains. Higher requirements urge the emergence of high-performance copper alloys. However, the traditional trial-and-error experimental observations and computational simulation research used to design and develop novel materials are time-consuming and costly. With the accumulation of material research and rapid development of computational ability, the thorough application of material genome engineering has sped up the development of novel materials and facilitates the process of systematic engineering application. This review summarizes the benefits of data-driven machine learning techniques and the state of the art of machine learning research in the area of copper alloys. It also displays the widely used computational simulation approaches (e.g., the first-principles calculation, molecular dynamics simulation, phase-field simulations, and finite element analysis) and their combined applications in material design and property prediction. Finally, the limitations of machine learning research methods are outlined, and future development directions are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.