Abstract
A mild data-driven approach for microwave imaging is considered in this paper. In particular, the developed technique relies upon the use of a Newton-type inversion scheme in variable-exponent Lebesgue spaces, which has been modified by including a data-driven operator to enforce the available a-priori information about the class of targets to be investigated. In this way, the performance of the method is improved, and the problems related to the possible convergence to local minima are mitigated. The effectiveness of the approach has been evaluated through numerical simulations involving the detection of defects inside (partially) known objects, showing good results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.