Abstract

For unstructured finite volume methods, we present a line implicit Runge–Kutta method applied as smoother in an agglomerated multigrid algorithm to significantly improve the reliability and convergence rate to approximate steady-state solutions of the Reynolds-averaged Navier–Stokes equations. To describe turbulence, we consider a one-equation Spalart–Allmaras turbulence model. The line implicit Runge–Kutta method extends a basic explicit Runge–Kutta method by a preconditioner given by an approximate derivative of the residual function. The approximate derivative is only constructed along predetermined lines which resolve anisotropies in the given grid. Therefore, the method is a canonical generalisation of point implicit methods. Numerical examples demonstrate the improvements of the line implicit Runge–Kutta when compared with explicit Runge–Kutta methods accelerated with local time stepping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.