Abstract

When transformed into Escherichia coli K12 strains, the mercury resistance transposon Tn5053@ exhibits high antirestriction activity against the EcoKI type I restriction and modification system. The products of the genes merR and ardD contribute to the antirestriction activity of Tn5053. The merR gene encodes the MerR protein, the transcription regulator of the mer operon genes. The ardD gene is responsible for ArdD protein synthesis and is located within the tni operon. In the following study, it was demonstrated that the antirestriction activity of the transposon Tn5053 is absent in E. coli K12 strains with the mutant genes clpX, clpP, and recA. The antirestriction effect of Tn5053 is not enhanced by 2-aminopurine. The Tn5053 antirestriction activity is not altered in E. coli K12 with the mutant dam gene; however, it is decreased in the E. coli K12 mutD. It is assumed that the activities of the MerR and ArdD proteins lead to the formation of a significant amount of unmodified DNA in the bacterial cell, causing the SOS-dependent reduction of the EcoKI (R2M2S) enzyme activity associated with ClpXP-induced proteolysis of the R-subuinit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.