Abstract

Background: Angiogenesis is a natural and complex mechanism that is regulated by biomolecules formed by the body. Medicinal inorganic chemistry is increasing in popularity due to metal-based compounds, offering significant chances and possibilities for building novel anti-cancer medicines with promising anti-angiogenic effects. Objective: This study aimed to examine the successful results obtained from treatments with nanoparticle formulations of active drug substances. Methods: The nanoprecipitation/solvent displacement approach, with some changes, was used to make PLGA-based NPs. Results: The particle size obtained in the blank formulation was 82.4–473.9 nm, while the particle size in the API-loaded NPs was 193.2–678.0 nm. Among the formulations, NP-950-P, NP-390-P, and NP-350-CSP2 were found to have significant antioxidant potentials with IC50 values of 3.025, 5.198, and 7.4242 µg.mL-1, respectively, when compared to Vit C. According to the microscopic evaluations, NP-950-P (including Pd(PyCrbx)2Cl2 as 50 µg.pellet-1) and NP-950-CSP2 (including Pd(PyCrbx)2Cl2 as 50 µg.pellet-1) showed strong anti-angiogenic effect whereas the other NP formulations showed weak anti-angiogenic effect when compared with the positive control (±)-Thalidomide at the concentration of 50 µg.pellet-1. Conclusion: When the results were examined, it was found that nanoscale drug carrier systems were prepared, and high antioxidant activity and anti-angiogenesis activity were detected, especially in nanoparticles prepared with 950. As per our knowledge, it is the first study in this field that will bring a new perspective to cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call