Abstract

Euphorbia pekinensis Rupr. (EP) (Euphorbiaceae), as Traditional Chinese Medicine (TCM), exhibits therapeutic effects on tumors in clinical practice. Anti-angiogenesis may be an underlying molecular mechanism of EP’s actions. However, the anti-angiogenic active ingredients of EP remain unclear. The screening and analysis of anti-angiogenic agents were essential for the sufficient utilization and development of EP. Thus, we established a UPLC-QTOF-MS method based on a transgenic zebrafish model to screen anti-angiogenesis activity components in EP. UPLC-QTOF-MS was used to characterize compounds from EP and in vivo compounds in Tg (flk1: mCherry) zebrafish larvae treated with EP. Based on the identification results, five components were selected, and their anti-angiogenesis activity were investigated via assessment of intersegmental blood vessels during the development of the transgenic zebrafish. Three of these components (3,3′-O-dimethoxy ellagic acid, quercetin, and ingenol) are active components of EP with anti-angiogenic effects. Among them, 3, 3′-O-dimethoxy ellagic acid and ingenol were first demonstrated with anti-angiogenesis effects. UPLC-PDA analysis was performed on EP water extracts to determine anti-angiogenesis active ingredients quantitatively. In the concentration range of 100–200 μg/mL, EP and the active ingredient compositions, mixed according to the content of EP, had equivalent anti-angiogenesis activities. These experimental results indicate that the UPLC-QTOF-MS method, combined with a transgenic zebrafish model, is rapid, sensitive and reliable. The combination in TCM offers the potential to achieve certain effect levels with lower concentrations of the individual compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.