Abstract

Helicobacter pylori is a gram-negative, helix-shaped, and microaerophilic bacteria that colonizes the human gastric mucosa, causing chronic infections, gastritis, peptic ulcer, lymphomas associated with lymphoid mucosa tissue, and gastric cancer. H. pylori is considered a Type 1 human carcinogen by WHO. The prevalence of the infection is estimated in more than half of the world population. Treatment of H. pylori infection includes antibiotics and proton pump inhibitors, but the increasing antibiotic resistance promotes the research of novel, more effective, and natural antibacterial compounds. The aim of this work was to study the effect of the partially purified proteolytic extract (RAP) of the fruits from Solanum granuloso-leprosum (Dunal), a South American native plant, and a purified fraction named granulosain I, against H. pylori, to obtain natural food additives for the production of anti-H. pylori functional foods. Furthermore, granulosain I and RAP could be used as natural adjuncts to conventional therapies. Granulosain I and RAP antibacterial activity was evaluated as minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against H. pylori NCTC 11638 (reference strain) and twelve H. pylori wild strains, using a microdilution plating technique (Clinical and Laboratory Standards Institute). All the strains tested were susceptible to granulosain I with MIC from 156.25 to 312.5 μg/mL and MBC from 312.5 to 625 μg/mL, respectively. Besides, all the strains tested were susceptible to the RAP with MIC from 312.5 to 625 μg/mL and MBC from 625 to 1,250 μg/mL, respectively. The effect of granulosain I and RAP on the transcription of H. pylori genes encoding pathogenic factors, omp18, ureA, and flaA, with respect to a housekeeping gene (16S rRNA), was evaluated by RT-PCR technique. The band intensity between pathogenic factors and control gene was correlated under treated or untreated conditions, using the ImageJ program. Granulosain I and RAP significantly decreased the expression of pathogenic factors: omp18, ureA, and flaA. The combined inhibitory effect of granulosain I or RAP and an antibiotic such as, amoxicillin (AML, 10 μg), clarithromycin (CLA, 15 μg), levofloxacin (LEV, 5 μg), and metronidazole (MTZ, 5 μg) was evaluated, using the agar diffusion technique. Granulosain I and RAP showed significant synergistic effect on AML, CLA, and LEV, but no significant effect on MTZ was observed. Besides, granulosain I and RAP did not show toxicological effects at the concentrations studied. Finally, granulosain I and RAP could be used as safe natural food additives and as adjuvants for conventional therapies against H. pylori.

Highlights

  • Helicobacter pylori is a gram-negative, curved, and microaerophilic bacillus which are infecting almost 50% of the population

  • The bacterium is considered a pathogen of global interest that causes gastritis, peptic ulcer, and lymphomas associated with lymphoid mucosa tissue which are associated with gastric carcinoma [3, 4]

  • The partially purified proteolytic extract of fruits from Solanum granuloso-leprosum was obtained by means of protein acetone precipitation

Read more

Summary

Introduction

Helicobacter pylori is a gram-negative, curved, and microaerophilic bacillus which are infecting almost 50% of the population. The bacterium is considered a pathogen of global interest that causes gastritis, peptic ulcer, and lymphomas associated with lymphoid mucosa tissue which are associated with gastric carcinoma [3, 4]. The prevalence, age distribution, and the consequences of infection are significantly different in developed and developing countries [5]. H. pylori remains within the gastric lumen (stomach) for a short time and enters the gastric mucosa, its ecological niche where the pH varies from 4.5 to 6.5. The bacterium has several virulence and pathogenic factors for colonization such as outer membrane proteins, urease, motility, chemotaxis, and its special helix morphology to neutralize the effects of gastric acidic pH [7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.