Abstract

Multidrug resistant organisms (MDROs) constitute a major public health threat globally. Clinical isolates of Pseudomonas aeruginosa remains one of the most studied MDROs however there is paucity of information regarding the susceptibility of its animal and plants isolates to antipseudomonas drug in Nigeria. From a total of 252 samples consisting of plants, animals and clinical samples, 54, 24 and 22 P. aeruginosa were isolated from vegetables, animals and clinical sources respectively. All the isolates were identified by standard biochemical methods. Antimicrobial susceptibility testing (AST) of the 100 P. aeruginosa isolates against 7 antipseudomonal drugs was carried out by disk diffusion method, the phenotypic detection of ESBL was done by double disk synergy test (DDST) while plasmid extraction on 20 selected isolates based on their resistance to 2 or more classes of antibiotics was carried out by alkaline lysis method and analysed with Lambda DNA/Hind lll marker respectively. The AST results revealed highest resistance of 91 and 55 % to ceftazidime and carbenicillin respectively while highest susceptibilities of 99 % for piperacillin–tazobactam and imipenem were recorded in overall assay. Fifteen out of 100 isolates specifically (10) from vegetables, (3) clinical and (2) poultry isolates showed synergy towards the beta-lactamase inhibitor indicating production of ESBL by DDST method. Detection of plasmids was among vegetable (n = 4), poultry (n = 4), cow (n = 3) and clinical isolates (n = 1). Plasmid profile for the selected isolates revealed 6 of the strains had one plasmids each while 5 strains possessed 2–4 plasmids and 1 strain had 5 plasmids. The sizes of the plasmid range from <1 to ≥23kbp. Detection of ESBL and Plasmids among the investigated isolates is suggestive of multiple interplay of resistance mechanism among the isolates. Plants and animal isolates of P. aeruginosa harbouring multiple mechanisms of resistance is of concern due to the danger it poses on the public health.

Highlights

  • Antimicrobial resistance (AMR) among bacterial species is global public threat

  • Studies on bacteria isolated from raw vegetables sold in different markets and eateries, that are resistant to commercially available antibiotics have been documented previously (Bhutani et al 2015; Nipa et al 2011)

  • The present study provides a view into the antibiotic susceptibility profile of P. aeruginosa isolated from plants animals and humans to antipseudomonas drugs

Read more

Summary

Introduction

Antimicrobial resistance (AMR) among bacterial species is global public threat. AMR in bacteria is commonly associated with different resistant genes, transfer mechanisms, and antibiotic resistance reservoirs among different species. The use of antibiotics in farming and livestock management has contributed to the spread of antibiotic. Odumosu et al SpringerPlus (2016) 5:1381 resistance genes in the environment (Kümmerer 2004). In Agriculture, management of livestock and crop production often involve the use antibiotics in form of consumables that are usually excreted as biologically active metabolites in the environment. This can increase selective pressure and favours the growth of antibiotic resistant strains of bacteria (Kümmerer 2004). Studies on bacteria isolated from raw vegetables sold in different markets and eateries, that are resistant to commercially available antibiotics have been documented previously (Bhutani et al 2015; Nipa et al 2011)

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call