Abstract

BackgroundPseudomonas aeruginosa is resistant to many antibiotics due to production of different classes of extended spectrum β-lactamases (ESBLs). Prevalence of ESBLs among P. aeruginosa has been increased in recent years, demonstrate a serious health problem especially in burn units worldwide. ObjectivePresent study was designed to determine the ESBL producing strains and identify the genes encoding three different ESBLs of bla PER-1, bla OXA-10 and bla CTX-M genes in P. aeruginosa isolates from burn patients. MethodsIn total 185 clinical isolates of P. aeruginosa were collected from infectious wounds of hospitalized burn patients. Antimicrobial susceptibility testing and phenotypic detection of ESBL were performed by disk diffusion method and Double disk Synergy Test (DDST). Polymerase Chain Reaction (PCR) was done for detection of bla OXA-10, bla PER-1 and bla CTX-M ESBL encoding genes. ResultsIn total, 176 (95.13%) isolates were multidrug resistant. The DDST demonstrated 96 (51.9%) isolates as putative ESBL producers with 100% or highly resistance to ofloxacin, cephalexin, aztreonam (97.57%) and ceftriaxone (91.6%). By PCR amplification, bla PER-1, bla OXA-10 and bla CTX-M genes were detected in 52 (54.16%), 66 (68.75%) and 1 (1.04%) isolates of ESBL producers respectively. Forty-three isolates (44.79%) were simultaneously positive for both bla OXA-10 and bla PER-1 related genes. ConclusionThe rate of ESBL producing P. aeruginosa was notable in present study. Since there are only limited effective antibiotics against the bacterium, therefore all isolates must be investigated by antimicrobial susceptibility testing, which limits resistance development in burn units and helps the management of treatment strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call