Abstract
The concept of fuzzy subgroups is a combination of the group structure with the fuzzy set, which was first introduced by Rosenfeld (1971). This concept became the basic concept in other the fuzzy algebra fields such as fuzzy normal subgroups, anti fuzzy subgroups and anti fuzzy normal subgroups. The development in the area of fuzzy algebra is characterized by the continual emergence of new concepts, one of which is the α-anti fuzzy subgroup concept. The idea of α-anti fuzzy subgroups is a combination between the α-anti fuzzy subset and anti fuzzy subgroups. The α-anti subset fuzzy which is an anti fuzzy subgroup is called as α-anti fuzzy subgroup. The purpose of this study is to prove that the α-anti fuzzy subset is an anti fuzzy subgroup, examine the relationship between α-anti fuzzy subgroups with anti fuzzy subgroups and α-fuzzy normal subgroups with anti fuzzy subgroups. The results of this study are, if A is an anti fuzzy subgroup (an anti fuzzy normal subgroup), then an α-anti subset fuzzy of A is an anti fuzzy subgroup (an anti fuzzy normal subgroup). However, this does not apply otherwise. Furthermore, this study also provides sufficient and necessary conditions for an α-anti fuzzy subset of any group to be an α-anti fuzzy subgroup and the formation of a group of factors that are built from an α-anti fuzzy normal subgroup.Keywords : Anti Fuzzy Subgroup, Anti Fuzzy Normal Subgroup, α-Anti Fuzzy Subgroup and α-Anti Fuzzy Normal Subgroup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.