Abstract
The effects of T cell differentiation arising from immune checkpoint inhibition targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on the immunological memory response remain unclear. Our investigation into the effects of anti-CTLA-4 and anti-PD-1 on memory T cell formation in mice reveals that memory T cells generated by anti-CTLA-4 exhibit greater expansion, cytokine production, and antitumor activity than those from anti-PD-1. Notably, anti-CTLA-4 preserves more T cell factor-1 (TCF-1)+ T cells during priming, while anti-PD-1 leads to more thymocyte selection-associated high mobility group box (TOX)+ T cells. Experiments using conditional Tcf7- or Tox-knockout mice highlight that TCF-1 is essential for the memory response generated by anti-CTLA-4, whereas TOX deletion alone in T cells has no effect on the response to anti-PD-1. Deepening our understanding of how checkpoint inhibition affects memory response is crucial for advancing our understanding of the enduring impacts of these immunotherapies on the immune system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have