Abstract

BackgroundColorectal cancer was the second leading cause of mortality in 2019 and the number of new colorectal cancer cases was the highest in 2018 and 2019 in Japan. PurposeThe present study investigated the inhibitory effects of 2(S)-2′,5,6′,7-tetrahydroxyflavanone and 2 (R), 3(R)-2′,3,5,6′-7-pentahydroxyflavanone on the incidence and growth of tumors in azoxymethane (AOM) plus dextran sulfate sodium (DSS)-treated mice. MethodsThe intraperitoneal administration of AOM (10 mg/kg) on day 0 induced colorectal carcinogenesis. Mice were given free and unlimited access to drinking water containing 1.5% (w/v) DSS on days 5 - 8, 30 - 33, and 56 - 57. They were orally administered tetra- and penta-hydroxyflavanones (10 and 30 mg/kg) for 10, 11, and 14 days followed by discontinuation intervals of 20 and 15 days. Cytokine, chemokine, programmed cell death-1 (PD-1), cyclooxygenase (COX)-2, and thymocyte selection-associated high mobility group box protein (TOX)/TOX2 expression levels were measured using their respective ELISA kits and an immunohistochemical analysis. ResultsThe number and area of tumors decreased by 60.6 and 72.9% in mice administered 10 mg/kg tetra- and pentahydroxyflavanones, respectively, with reductions of 95.0 and 87.0% in Ki-67-positive cells, 91.7 and 92.7% in COX-2-postive cells, and 83.1 and 93.8% in TOX/TOX2-positive cells, respectively, in the colon. On the other hand, two tera- and pentahydroxyflavanone had no effect on p53 (a tumor suppressor by cell cycle arrest and apoptosis)-positive cells. The administration of 10 mg/kg tetra- and pentahydroxyflavanones to AOM/DSS-treated mice also resulted in decreases of 59.5 and 42.5% in IL-10 levels and 58.1 and 93.9% in PD-1 levels, respectively, in the colon. ConclusionThe inhibitory effects of tetra- and pentahydroxyflavanones on the growth of colon tumors in AOM/DSS-treated mice appear to be associated with decreases in the colon levels of IL-10 and PD-1 through the down-regulated expression of COX-2 and CD8+ T-cell exhaustion by TOX/TOX2 in the tumor microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call