Abstract
Abstract Dispersion properties of transverse magnetic (TM) waves in a subwavelength metallic waveguide loaded by uniaxial metamaterials are investigated, based on two kinds of uniaxial metamaterials with different orientations of optical axis. The numerical results show that the existence of fundamental TM 0 mode and high-order TM modes in the waveguide system is dependent on the orientation of optical axis. In addition, their anomalous dispersion properties are clarified. When the orientation of optical axis is selected properly, there are two branches of dispersion curves for each high-order mode—one is normal dispersion and another belongs to anomalous dispersion, showing a transition from a backward wave to a forward one with the increase of working frequency. Moreover, the group velocity and energy flow distribution for TM 1 mode are also demonstrated. These properties may have potential applications in optical information storage, integrated optics and nanophotonic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have