Abstract

Abstract Dispersion properties of transverse magnetic (TM) waves in a subwavelength metallic waveguide loaded by uniaxial metamaterials are investigated, based on two kinds of uniaxial metamaterials with different orientations of optical axis. The numerical results show that the existence of fundamental TM 0 mode and high-order TM modes in the waveguide system is dependent on the orientation of optical axis. In addition, their anomalous dispersion properties are clarified. When the orientation of optical axis is selected properly, there are two branches of dispersion curves for each high-order mode—one is normal dispersion and another belongs to anomalous dispersion, showing a transition from a backward wave to a forward one with the increase of working frequency. Moreover, the group velocity and energy flow distribution for TM 1 mode are also demonstrated. These properties may have potential applications in optical information storage, integrated optics and nanophotonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.