Abstract

In this paper, cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) nanoparticles (NPs) have been prepared using chemical co-precipitation method. In order to investigate the annealing induced effects on their various physical properties, the prepared samples have been annealed at 500 °C, 650 °C and 1000 °C and then compared with as-prepared sample. X-ray diffraction (XRD) patterns of as-prepared and annealed samples at various temperatures exhibit single phase spinel structure. Enhancement in crystallinity and crystallite size is observed with the increase in annealing temperature. The annealing has also greatly influence the morphology and grain size of prepared NPs. The Co0.5Zn0.5Fe2O4 NPs have shown remarkable enhancement in magnetic moment with increase in annealing temperature. The bandgap energies of Co0.5Zn0.5Fe2O4 NPs have been measured via UV Spectrometer and observed to decrease with annealing temperature. FTIR spectra of the samples reveal the presence of both high frequency and low-frequency bands due to tetrahedral and octahedral sites, which corroborate well with the XRD results. The observed characteristics of cobalt zinc ferrite NPs as a function of annealing temperature are the rising contender for many data storage and nanodevice applications. Finally, the genotoxicity of prepared nanoferrites has been checked via comet assay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call