Abstract
Measurements of absorbance and transmittance in Ge20Se80-xBix (0 ≤ x ≤ 10 at %) chalcogenide thin films in the visible range at room temperature were carried out. The dependence of the optical absorption on the photon energy is described by the relation αhv=B(hv-E0)2. It was found that the optical energy gap E0 decreases gradually from 1.93 to 1.205 eV with increasing Bi content up to 10 at %. The rate of the change decreases with increasing Bi content. The composition dependence of the optical energy gap is discussed on the basis of the concentration of covalent bonds formed in the chalcogenide film. The decrease of optical energy gap with increasing Bi content is related to the increase of Bi–Se bonds and the decrease of Se-Se bonds. The effect of thermal annealing for different periods of time on the behavior of optical absorption of the as-deposited films was investigated. The optical gap increases with increasing annealing time. The rate of change decreases with increasing annealing time, then E0 reaches a steady state. The increase in the values of the optical gap of the amorphous films with heat treatment is interpreted in terms of the density of states model. The structure of the as-prepared and thermally annealed films were investigated using transmission electron microscopy, energy dispersive analysis and X-ray diffraction. It was confirmed that the as-prepared films were in the amorphous state. Phase separation was observed after thermal annealing. The separated crystalline phases were identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.