Abstract

The present paper is focused on the in-situ prepared Poly (vinyl alcohol)–Silver (PVA–Ag) nanocomposites and tailoring their optical properties by means of UV irradiation in such a way that these can be used for anti-reflective coatings and bandpass filters. The reflectance from these irradiated nanocomposites has been found to decrease leading to the increase in refractive index (RI), with increasing UV exposure time, in the entire visible region. Decrease in optical energy gap of PVA film from 4.92 to 4.57eV on doping with Ag nanoparticles has been observed which reduces further to 4.1eV on exposure to UV radiations for 300min. This decrease in optical energy gap can be correlated to the formation of charge transfer complexes within the base polymer network on embedding Ag nanoparticles, which further enhances with increasing exposure time. Such complexes may also be responsible for increased molecular density of the composite films which corresponds to decrease in reflectance corroborating the observed results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call