Abstract

Knee osteoarthritis (OA) is a disease caused by age-related muscle weakness, obesity, or sports injury that leads to gait disability due to pain during walking. Knee OA is characterized by abnormal knee joint alignment and rotational dyskinesia, which are believed to worsen the symptoms. We previously developed an ankle orthosis that mechanically induces the rotation of the lower limb in conjunction with that of the ankle joint. This orthosis can effectively correct the alignment of the knee joint. However, slippage between the orthosis and leg can occur during walking, decreasing the corrective force. In this study, we clarify the effect of slippage between the orthosis and body on the correction force of the orthosis, and develop a lower leg tracking mechanism to suppress slippage and minimize reduction of force. The effectiveness of the proposed mechanism was evaluated by three-dimensional motion analysis of gait. Analysis results confirmed that the proposed mechanism was effective in suppressing slippage and improving correction force, demonstrating the effectiveness of the mechanism for knee OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.