Abstract
In west-central Nevada, the Oligocene Candelaria pyroclastic sequence reaches a local thickness of up to 1.3 km, in what has been referred to as the Candelaria trough, but more generally the accumulation of ash-flow tuffs and related volcanic rocks is less than 300 m thick. Complete to near complete outcrops are scattered over about 3200 km2 in the Candelaria Hills and surrounding ranges of the Southern Walker Lane structural zone. Three regionally extensive compound cooling units within the overall sequence (25.8 Ma Metallic City, 24.1 Ma Belleville, and 23.7 Ma Candelaria Junction Tuffs) have distinguishing characteristics and are the focus of study. At 106 sites, anisotropy of magnetic susceptibility (AMS) data provide an estimate of transport direction of each tuff. Inferred transport directions based on the AMS data are corrected for a modest clockwise, yet variable magnitude, vertical axis rotation that affected these rocks in late Miocene to Pliocene time, as revealed by paleomagnetic studies. The AMS data show a somewhat orderly pattern of magnetic fabrics that we interpret to define unique transport directions for the Metallic City and Candelaria Junction Tuffs. The low susceptibility and degree of anisotropy of the Belleville Tuff limits our interpretation from this pyroclastic deposit. The Metallic City and Candelaria Junction Tuffs typically show gentle, south–southeast and southeast dipping magnetic fabric imbrication, respectively, and very gently plunging magnetic lineations. These AMS fabric elements indicate the tuffs were transported to the north–northwest and northwest, respectively. The AMS fabric data from the Metallic City and Candelaria Junction Tuffs suggest relatively unrestricted flow during emplacement. Evidence across the 3,200 km2 area to support more regionally controlled channelized flow into and/or flow along the east northeast–west southwest axis of the Candelaria trough is lacking. The ignimbrites clearly filled a topographic depression inferred to have formed concurrent with early, localized Basin and Range extension during pyroclastic emplacement, but based on the uniformity of AMS fabric data, we infer that the depression quickly filled and did not hinder flow across the region. Unrecognized eruptive centers for the three ignimbrites may lie buried beneath Neogene basin fill sediments south–southeast of the Candelaria Hills or concealed below younger deposits farther southeast into the Palmetto Mountains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have