Abstract

Anisotropy of magnetic susceptibility (AMS) and structural studies of red beds in the Wyoming salient were completed to evaluate relations of magnetic fabrics to layer-parallel shortening and vertical-axis rotation in curved fold-thrust systems. The red beds display cleavage, fractures, veins, minor folds, and minor faults that accommodated widespread early layer-parallel shortening and minor strike-parallel extension. Magnetic susceptibility is carried mostly by paramagnetic phyllosilicates and ferromagnetic hematite that have composite fabrics related to sedimentary deposition, diagenesis, and tectonic processes. Anisotropy of magnetic susceptibility fabrics range from distinctly oblate ellipsoids parallel to bedding that reflect dominant sedimentary fabrics (type 1), to moderately oblate ellipsoids with weak magnetic lineations roughly parallel to the intersection of weak layer-parallel shortening fabrics and bedding (type 2), to triaxial and prolate ellipsoids with distinct magnetic lineations parallel to the intersection of moderate layer-parallel shortening fabrics and bedding (type 3). Type 1 sites occur mostly in the central, frontal part of the salient where layer-parallel shortening is <5%, whereas type 3 sites are found mostly in more interior thrust systems and toward the salient ends where layer-parallel shortening is >15%. Magnetic lineations are subparallel to structural trend and exhibit a tangential pattern around curved fold-thrust systems. Regional patterns of anisotropy of magnetic susceptibility are broadly similar to patterns of finite strain estimated from reduction spots. Combined with paleomagnetic data, anisotropy of magnetic susceptibility data indicate that early layer-parallel shortening fabrics started with minor primary curvature and then underwent significant vertical-axis rotation during large-scale thrusting. Correlations with finite strain, structural, and paleomagnetic data sets indicate that analysis of anisotropy of magnetic susceptibility in weakly deformed red beds is useful for evaluating kinematic evolution of thrust systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call