Abstract
Abstract Metal additive manufacturing is a molding method with a high degree of freedom because it can be created from high-strength materials using by CAD, etc. In recent years, there is a demand for metal additive manufacturing due to the demand for more complex mechanisms and shape in industrial products. However, the mechanical properties of metal additive manufacturing materials as metallic materials are not clear compared to metallic materials by melting method. In this study, two types of metal additive manufacturing (AM) materials with different lamination directions are carburized and heat treated to clarify the differences from general metallic materials and to clarify the causes. The carburized AM materials were confirmed to have a surface hardness of 550HV and a total carburization depth of 200 μm, but the amount of carburization differed depending on the orientation. In addition, when analyzed with a SEM, a metal structure was formed in an equiaxed crystal shape, and segregation of metal elements was observed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have