Abstract

Magnetic particle spectroscopy (MPS) is used in this work to obtain a magnetic fingerprint signal from anisotropic supraparticles, i.e., microrods assembled from superparamagnetic iron oxide nanoparticles. Exceeding its intended purpose of nanoparticle characterization for biomedical magnetic particle imaging, it is shown that MPS is capable of resolving structural differences between the anisotropic alignment of individual nanoparticles and its isotropic counterpart. Additionally, orientation-dependent MPS signal variations of anisotropic supraparticles are identifiable. This finding enables the detection of cold-chain breaches (for instance, during delivery of a product that needs to be cooled all of the time) by recording the initial and final MPS signals of microrod samples integrated into the container of a frozen product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.