Abstract

Anapole modes supported by well-designed dielectric nanostructures have attracted extensive attention in the field of nanophotonic applications owing to their unique strong near-field enhancement and non-radiative far-field scattering characteristics, yet it is still difficult to achieve high Q-factor resonance features with a narrow linewidth. In this work, a periodic slotted silicon nanodisk array is theoretically proposed to realize narrow linewidth and high Q-factor resonance in the near-infrared wavelength range. Through introducing the coupling between the anapole modes in the single dielectric nanostructure and the diffractive wave mode arising from the periodic array, the as-designed dielectric nanostructure synchronously manifests excellent spectral features with a bandwidth as narrow as about 2.0 nm, a large Q-factor of 599, an almost-perfect transmission amplitude of 96% and a relatively high electric field intensity (>2809 times) in the middle of the slotted silicon nanodisk. The as-designed nanostructure possessing these outstanding optical features can work as a high-efficiency refractive index sensor, whose sensitivity can reach 161.5 nm RIU−1 with its figure of merit attaining 80.8 RIU−1, efficiently distinguishing an index change of less than 0.01. The proposed slotted silicon nanodisk array exhibits tremendous potential for expanding applications such as label-free biochemical sensing, plasmonic refractive index sensing and surface enhancement spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call