Abstract

To address the need for the accurate parameterization of radiative absorption by gasses (for predicting atmospheric warming), Chou et al. developed a new k-distribution method. In this study, we compared the improved k-distribution method (hereinafter referred to as the NEW method) with the New Goddard radiation schemes (hereinafter referred to as the OLD method) for the WRF (the weather research and forecasting) model. The results of radiative flux calculations by the NEW and OLD methods of k-distribution using the New Goddard Radiation Scheme were compared with the results of the line-by-line (LBL) method, and the results showed that the radiative flux calculated by the NEW was accurate to within 1.00 Wm−2 with respect to the LBL, while the OLD showed large differences at altitudes above the upper troposphere and near the surface. Therefore, in this study, we selected clear-sky and cloudy-day conditions and compared the weather elements prediction results of WRF using the NEW and OLD methods. For the clear-sky days, the downward shortwave radiation at the surface and the temperature at 2 m above the surface (hereinafter referred to as T2) over land and ocean were reversed in sign due to the highly sensitive absorption coefficients of gasses. For cloudy days, the absorption effect by gasses harmonized with the scattering effect induced by cloud droplets; the differences in the shortwave and longwave radiations and radiative heating rate between the NEW and OLD methods were obvious. Thus, it was analyzed that the proposed NEW method could lead to significant improvements in forecasting weather elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call