Abstract
Global WRF (GWRF) is an extension of the mesoscale Weather Research and Forecasting (WRF) model that was developed for global weather research and forecasting applications. GWRF is being expanded to simulate atmospheric chemistry and its interactions with meteorology on a global scale. In this work, the ability of GWRF to reproduce major boundary layer meteorological variables that affect the fate and transport of air pollutants is assessed using observations from surface networks and satellites. The model evaluation shows an overall good performance in simulating global shortwave and longwave radiation, temperature, and specific humidity, despite large biases at high latitudes and over-Arctic and Antarctic areas. Larger biases exist in wind speed and precipitation predictions. These results are generally consistent with the performance of most current general circulation models where accuracies are often limited by a coarse grid resolution and inadequacies in sub-filter-scale parameterizations and errors in the specification of external forcings. The sensitivity simulations show that a coarse grid resolution leads to worse predictions of surface temperature and precipitation. The combinations of schemes that include the Dudhia shortwave radiation scheme or the Purdue Lin microphysics module, or the Grell-Devenyi cumulus parameterization lead to a worse performance for predictions of downward shortwave radiation flux, temperature, and specific humidity, as compared with those with respective alternative schemes. The physical option with the Purdue Lin microphysics module leads to a worse performance for precipitation predictions. The projected climate in 2050 indicates a warmer and drier climate, which may have important impacts on the fate and lifetime of air pollutants.
Highlights
The Weather Research and Forecasting (WRF) model has been developed by the National Center for Atmospheric Research (NCAR) to improve weaknesses of the Mesoscale Meteorological Model, Version 5 (MM5) and provide a flexible and portable open-source community model for both atmospheric research and operational forecasting [1,2]
Global WRF (GWRF) predictions are evaluated against surface observational networks and gridded reanalysis data which combine data from surface and satellite observations with other model outputs
The model evaluation focuses on major boundary layer meteorological variables including a combination of nonconvective and convective weekly accumulated precipitation (RAINC + RAINNC), 2-meter temperature (T2) and specific humidity (Q2), and 10-meter wind velocities and their zonal (U10) and meridional (V10) components, as well as radiation variables such as SW and LW radiation
Summary
The Weather Research and Forecasting (WRF) model has been developed by the National Center for Atmospheric Research (NCAR) to improve weaknesses of the Mesoscale Meteorological Model, Version 5 (MM5) and provide a flexible and portable open-source community model for both atmospheric research and operational forecasting [1,2]. The WRF system allows users to interchange various cores and physics packages, which is useful for inter-model evaluations and module sensitivity studies [3]. A global version of WRF (GWRF) released in 2008 is an extension of mesoscale WRF and a variant of planet WRF, which was initially designed to study the atmospheres and climate systems of other planets such as Mars, Titan, and Venus [25,26]. Four major modifications to the mesoscale WRF were made for application to the planetary atmosphere as the planet WRF: modification of the projection from an isotropic to a non-isotropic grid (i.e. to accommodate a latitude-longitude mesh), the addition of polar Fourier filters to remove model instabilities near the poles, adaptation of planetary constants and timing parameters, and parameterizations of sub-grid scale physical processes associated with specific planets [25]. To adapt the planetary model to the Earth, as opposed to other planets, certain Earth-specific planetary constants
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have