Abstract
By adding various amounts of CeB6, high-speed steel (M3:2) was consolidated by powder metallurgy in the form of sintering. The addition of CeB6 improved the density of the sintered steel and the formation of M6C phase in microstructure. It is speculated that CeB6 was decomposed into boron and cerium. Boron atoms were enriched in M6C carbide phases, but cerium atoms were mainly clustered on grain boundary while they were converted to oxides, whereby the mechanical properties were improved. For example, upon the sintering at 1210 °C, relative density ~ 98.5% and average grain size ~ 18 μm were obtained with CeB6 content at 0.3 wt.%. Excellent mechanical properties, e.g., the Rockwell hardness ~ 52 HRC, flexural strength ~ 3.05 GPa, and fracture toughness ~ 40.92 MPa m1/2, were achieved in the sample containing 0.3 wt.% CeB6, which implies accordingly remarkable increases by 23.5, 38.1, and 23.7%, of the properties compared with those in the sample free of CeB6.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have