Abstract

Mullite/hBN composites were fabricated with different rare earth oxides additives (ReO: Er2O3, CeO2, La2O3, Lu2O3) by pressureless sintering at 1600°C for 4h. The impacts of ReO on the phase composition, microstructure, mechanical, dielectric and tribological properties of the composites were investigated. XRD results showed that all the ReO additives were beneficial to the formation of mullite phase. With the decrease in the ionic radius of the ReO, the mullite grains of the composite were refined while their mechanical properties were increased. The sample sintered with Lu2O3 showed the smallest grain size and the most excellent mechanical properties, e.g., its relative density, flexure strength, fracture toughness and hardness reached 93.7%, 222MPa, 3.2MPam1/2 and 6.02GPa, respectively. Due to the different porosity and phase composition of the composites, the sample sintered with La2O3 had the lowest dielectric constant while the sample sintered with Er2O3 exhibited the lowest dielectric loss. Attributing to the highest hardness and fracture toughness, the sample sintered with Lu2O3 showed the best tribological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.