Abstract
Along with the explosive growth of wireless communication network users who require large frequency bands and low latency, it is a challenge to create a new wireless communication network beyond 5G. This is because installing a massive 5G network requires a large investment by network providers. For this reason, the authors propose an alternative beyond 5G that has better quality than 5G and a relatively lower investment value than 5G networks. This study aims to analyze the downlink of the cooperative non-orthogonal multiple access (NOMA) network, which is usually used in 5G, combined with the use of a reconfigurable intelligence surface (RIS) antenna with decode and forward relay mechanisms. RIS is processed with a limited number of objects utilizing Rayleigh fading channels. The scenario is created by a user who relays without a direct link for users near the base station and with a direct link for users far from the base station. Under the Nakagami-m fading channel, the authors carefully evaluated the probability of loss for various users as a function of perfect channel statistical information (p-CSI) utilizing simply a single input-output (SISO) system with a finite number of RIS elements. As a key success metric, the efficiency of the proposed RIS-assisted NOMA transmission mechanism is evaluated through numerical data on the outage probability for each user. The modeling outcomes demonstrate that the RIS-aided NOMA network outperforms the traditional NOMA network
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOIV : International Journal on Informatics Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.