Abstract

Class attendance is a crucial indicator of students' seriousness towards learning. Many institutions continue to use manual methods, which are usually error-prone and unproductive. By leveraging computer vision algorithms, the system accurately captures and verifies the identity of students attending class. This paper aims to investigate and create an automated facial recognition system for classroom attendance to increase the precision and effectiveness of the attendance tracking system. To achieve this, we propose a system using computer vision technologies, namely Histogram of Oriented Gradients (HOG) with Support Vector Machine (SVM) for face detection and deep Convolutional Neural Networks (CNN) for face identification. The facial recognition system simplifies attendance recording, requiring participants to only gaze into the camera for the system to record their presence automatically. The system is rigorously tested and evaluated, and its accuracy is compared to our institution's current QR code attendance method. The study results reveal that the recommended approach is more accurate and competent than the existing procedures. The system allows for precise attendance records with real-time face detection and recognition capabilities. This technology ensures accurate and reliable attendance data, empowering organizations to make informed decisions, effectively manage resources, and provide a seamless experience for all students. In addition, a similar attendance system can be deployed for any event in an organization, thereby enhancing overall operational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.