Abstract

In this paper, a simple structure for short channel junction-less double gate (JLDG) MOSFET is proposed. Further expression for surface potential of JLDG has been derived using 2D PoissonΧ³s equation. Based on the proposed analytical model for surface potential distribution along channel thickness and channel length is derived. The proposed junction-less MOSFET has no p-n junction as the doping of channel is same to that of Source/Drain region. The analytical model is compared with numerical solution using ATLAS device simulator. The result shows the variation of channel potential with channel length, channel thickness, doping concentration and applied gate bias. Further, in this paper the analog performance and RF figure of merits (FOMs) have been investigated. The purpose of this research is to provide a physical explanation for improved analog and RF performance exhibited by the device. In this paper major FOMs such as trans-conductance (gm), output conductance (gd), early voltage (VEA), intrinsic gain (AV), trans-conductance generation factor (TGF), cut-off frequency (fT), trans-conductance frequency product (TFP), gain frequency product (GFP), gain trans-conductance frequency product (GTFP) are analyzed. The simulation result shows that the JLDG exhibit a higher trans-conductance, higher cut-off frequency and lower drain conductance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.