Abstract
The generatrix of a nonlinearly vibrating charged drop of a viscous incompressible conducting liquid is found by directly expanding the equilibrium spherical shape of the drop in the amplitude of initial multimode deformation up to second-order terms. A fact previously unknown in the theory of nonlinear interaction is discovered: the energy of an initially excited vibration mode of a low-viscosity liquid drop is gradually (within several vibrations periods) transferred to the mode excited by only nonlinear interaction. Irrespectively of the form of the initial deformation, an unstable viscous drop bearing a charge slightly exceeding the critical Rayleigh value takes the shape of a prolate spheroid because of viscous damping of all the modes (except for the fundamental one) for a characteristic time depending on the damping rates of the initially excited modes and the further evolution of the drop is governed by the fundamental mode. In a high-viscosity drop, the rate of rise of the unstable fundamental mode amplitude does not increase continuously with time, contrary to the predictions of nonlinear analysis in terms of the ideal liquid model: it first decreases to a value slightly differing from zero (which depends on the extent of supercriticality of the charge and viscosity of the liquid), remains small for a while (the unstable mode amplitude remains virtually time-independent), and then starts growing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.