Abstract

A solution to the problem of nonlinear surface vibration of a charged ideal liquid drop is found in a third-order approximation in initial multimode deformation of the equilibrium spherical shape by the method of many scales. It is shown that the spectrum of modes that are responsible for the shape of the drop at an arbitrary time instant depends considerably on the spectrum of modes governing the initial deformation of the drop. The latter spectrum also has an effect on nonlinear corrections to the vibration frequencies and, consequently, on a nonlinear correction to the critical Rayleigh parameter, which specifies the stability of the drop against self-charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.