Abstract

Low-dimensional photoconductors have extraordinarily high photoresponse and gain, which can be modulated by gate voltages as shown in literature. However, the physics of gate modulation remains elusive. In this work, the physics of gate modulation in silicon nanowire photoconductors with the analytical photoresponse equations is investigated. It is found that the impact of gate voltage varies vastly for nanowires with different size. For the wide nanowires that cannot be pinched off by high gate voltage, it is found that the photoresponses are enhanced by at least one order of magnitude due to the gate-induced electric passivation. For narrow nanowires that starts with a pinched-off channel, the gate voltage has no electric passivation effect but increases the potential barrier between source and drain, resulting in a decrease in dark and photocurrent. For the nanowires with an intermediate size, the channel is continuous but can be pinched off by a high gate voltage. The photoresponsivity and photodetectivity is maximized during the transition from the continuous channel to the pinched-off one. This work provides important insights on how to design high-performance photoconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.