Abstract

In this study, we reported on the evaluation result of the optimized high voltage gate patterning in liquid crystal display (LCD) driver integrated circuit (IC) with its preparation, characterization and composition of each parameter such as etching gas chemistry, RF power, and pressure. The patterning process of high voltage gate oxide was performed with the CF 4 /CHF 3 /O 2 /Ar based gas chemistry to avoid the leakage current from high voltage gate stack by non-uniform remnant gate oxide thickness. Albeit we obtained the minimized fluctuation of gate oxide thickness, the plasma damage by plasma patterning process affected the leakage current of high voltage gate film stack. In conclusion, we found that the major parameter for leakage current in high voltage gate stack by DOE method of gate patterning and achieved that the optimized condition of high voltage gate patterning. To optimize the performance of high voltage gate oxide, the thickness of remnant oxide must be controlled uniformly in gate patterning for improving the margin of high voltage gate transistor. Verifying that the patterning performance of physical and electrical characteristics with analytical tools such as secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), auger electron spectroscopy (AES) and probe station as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.