Abstract
Graphic abstractVarious viruses can hide within fluid and solid structures and thus successfully cross different distances, causing the spread of viral infections. Analytical modeling of the triple treatment of virus within a small liquid droplet and within a solid porous particle is the basic research polygon of this paper. The three-stage treatment aims to maximize the efficacy of deactivating viruses indoors. In order to achieve this, viruses undergo treatment by infrared heating, ultraviolet deactivation and ionization–electrostatic deactivation by negative ions. When the droplets are treated with infrared heating, incomplete evaporation occurs, reducing their initial diameter by 10 times; an initial diameter of droplets is 0.01 mm, 0.03 mm and 0.05 mm. Thermal inactivation of viruses inside the droplets is almost negligible, due to short exposure time and a maximum temperature of 100 °C. On the other hand, when solid porous particles are heated to a much higher temperature at the same exposure time, this causes significant thermal inactivation of viruses inside them. Reducing the diameter of the droplet (due to evaporation) by 10 times causes a multiple increase in UV-C deactivation of viruses inside the droplets. The effect of UV-C radiation on viruses within solid porous particles is not included in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.