Abstract
COVID-19 is a pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus is mainly spread by droplets, respiratory secretions, and direct contact. Caused by the huge spread of the COVID-19 epidemic, research is focused on the study of biosensors as it presents a rapid solution for reducing incidents and fatality rates. In this paper, a microchip flow confinement method for the rapid transport of small sample volumes to sensor surfaces is optimized in terms of the confinement coefficient β, the position of the confinement flow X, and its inclination α relative to the main channel. A numerical simulation based on two-dimensional Navier-Stokes equations has been used. Taguchi's L9(33) orthogonal array was adopted to design the numerical assays taking into account the confining flow parameters (α, β, and X) on the response time of microfluidic biosensors. Analyzing the signal-to-noise ratio allowed us to determine the most effective combinations of control parameters for reducing the response time. The contribution of the control factors to the detection time was determined via analysis of variance (ANOVA). Numerical predictive models using multiple linear regression (MLR) and an artificial neural network (ANN) were developed to accurately predict microfluidic biosensor response time. This study concludes that the best combination of control factors is that corresponds to , and X = 40µm. Analysis of variance (ANOVA) shows that the position of the confinement channel (62% contribution) is the factor most responsible for the reduction in response time. Based on the correlation coefficient (R 2), and value adjustment factor (VAF), the ANN model performed better than the MLR model in terms of prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.