Abstract

A physically based compact analytical single electron transistor (SET) model is proposed for hybrid CMOS-SET analog circuit simulation. The modeling approach is based on the orthodox theory of single electron tunneling, and valid for single or multi gate, symmetric or asymmetric devices and can also explain the background charge effect. The model parameters are physical device parameters and an associated parameter extraction procedure is reported. The device characteristics produced by the proposed model are verified with Monte Carlo simulation for large range of drain to source voltages (|V/sub DS/|/spl les/3e/C/sub /spl Sigma//) and temperatures [T/spl les/e/sup 2//(10k/sub B/C/sub /spl Sigma//)] and good agreements are observed. The proposed model is implemented in a commercial circuit simulator in order to develop a computer-aided design framework for CMOS-SET hybrid IC designs. A series of SPICE simulations are successfully carried out for different CMOS-SET hybrid circuits in order to reproduce their experimental/Monte Carlo simulated characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call