Abstract
Accurate assessment of uncertainties in cross-section data is crucial for reliable nuclear reactor simulations and safety analyses. In this study, we focus on the interpolation procedure of the partial derivatives (PD) cross-section model used to evaluate nodal parameters from pregenerated multigroup libraries. Our primary objective is to develop a systematic methodology that enables prediction of the incurred errors in the cross-section model, leading to the development of optimal case matrices, more efficient cross-section models, and informed case matrix construction for reactor types lacking substantial data and experience. We make progress toward this objective through a rigorous analytic error analysis enabled by the derivation of error expressions and bounds for the PD model based on the discovery that the method is a form of Lagrange interpolation. Our investigations reveal distinct outcomes depending on the chosen cross-section functionalizations, achieved by identifying the sources of error. These error sources are found to include interpolation error, which is always present, and model form error, which is a property of the supplied case matrix. We show that simply increasing grid refinement through the addition of branches may not always lead to decreased cross-section errors, particularly in cases where the model form error predominantly contributes to the total error. We present numerical results and verification in a companion paper, showing these different error characteristics for various cross-section functionalizations. Although applied to current light water reactor environments, our methodology offers a means for advanced reactor analysts to develop case matrices with quantified error levels, advancing the goal of a general methodology for robust two-step reactor analysis. Future work includes exploring different lattice types and functionalizations, extending reactivity bounds to multilattice problems, and investigating historical effects within the macroscopic depletion model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.