Abstract

The mechanism supporting the stability of complex food webs is an important, yet still controversial issue in ecology. Integrating the bioenergetic model with a natural plankton food web with empirical organism body mass distribution, we studied the effects of taxa diversity, nutrient enrichment simulation and connectance on the stability of plankton, and the underlying mechanisms. The behavior and functions of plankton with different body masses in the system were also explored. The results showed that genus richness promoted the temporal stability of community but reduced that of population. Meanwhile, the effects of taxon extinction on community biomass and temporal stability depended on the body masses of those lost taxa. Enrichment decreased phytoplankton and zooplankton community stability directly by increasing the temporal variability of biomass and indirectly by reducing taxa diversity. Enrichment preferentially caused phytoplankton taxa with the highest individual biomass to go extinct and the ones with smaller to increase in biomass. The effects, as well as the underlying mechanisms of connectance on phytoplankton and zooplankton stability were different. High connectance promoted the persistence and biomasses of both zooplankton and small-bodied phytoplankton but reduced those of larger-bodied phytoplankton. The results and methodology in this research will be helpful in understanding and analyzing the stability of plankton communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call