Abstract

Currently, energy consumption in the digital circuit is a key design parameter for emerging mobile products. The principal cause of the power dissipation during idle mode is leakage currents, which are rising dramatically. Sub-threshold leakage is increased by the scaling of threshold voltage when gate current leakage increases because oxide thickness is scaled. With rising demands for mobile devices, leakage energy consumption has received even greater attention. Since a mobile device spends most of its time in standby mode, leakage power savings need to prolong the battery life. That is why low power has become a significant factor in CMOS circuit design. The required design and simulation of an AND gate with the BSIM4 MOS parameter model at 27 0C, supply voltage of 0,70V with CMOS technology of 65nm are the validation of the suitability of the proposed circuit technology. AND simulation. The performance parameters for the two AND input gate are compared with the current MTCMOS and SCCMOS techniques, such as sub-threshold leakage power dissipations in active and standby modes, the dynamic dissipation, and propagation period. The proposed hybrid super cutoff complete stack technique compared to the current MTCMOS technology shows a reduction in sub-threshold dissipation power dissipation by 3. 50x and 1.15x in standby modes and active modes respectively. The hybrid surface-cutting technique also shows savings of 2,50 and 1,04 in power dissipation at the sub-threshold in standby modes and active modes compared with the existing SCCMOS Technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call