Abstract
Static random access memory (SRAM) is a sort of RAM where information is not permanently stored and does not require routine updating. To reduce leakage power without sacrificing performance, a variety of approaches have been applied to SRAM cells. In this study, we suggest a new 16T SRAM design that can function in active, park, standby, or hold modes. A fully static mode of operation for SRAM is made possible by the 16T SRAM structure, which also enhances write margin (WM) and removes charging conflict between devices during read and write operations. The key objectives of the suggested architecture are to retain logic state in park mode while maintaining stability and reducing standby time in active mode, as well as to reduce leakage current in standby mode. This is done by removing feedback from the back-to-back inverters during write operations via the data-dependent supply block. This makes it possible for the suggested bitcell to considerably increase the WM. A novel SRAM cell with 16 transistors is created with subthreshold operation and enhanced data stability. By using an equalized bit line technique to avoid leakage due to enhanced data pattern and RBL detection, the suggested single-ended SRAM cell with dynamic feedback control lowers the static noise margin for ultra-low power transfer. A sleep transistor is incorporated into the architecture to save power consumption when the system is in standby mode due to inefficient voltage transmission. Tanner EDA tool V.14.1 on 45-nm CMOS was used for design and simulation. The outcomes demonstrate a considerable decrease in no-load current and power loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.