Abstract
The reason why the failure protective properties of the oxide layer of T91 high temperature superheater tube were analyzed in this study. The microstructure of the oxide layer of T91 high temperature superheater tube was observed by scanning electron microscope (SEM) and the morphological features of it was also analyzed. The concentrations of alloy elements in the section of internal tube were quantitatively analyzed using Energy Dispersive System (EDS). The results showed that the oxide layer of T91 tube can be divided into three layers: inner layer, middle layer and outer layer. The inner layer was formed by chromium rich oxide with compact structure. The middle layer was made up by porous oxide with loose structure. The outer layer was identified as Fe2O3. When the content of dissolved oxygen in steam was excessive, the apparent peeling marks will be appeared in the oxide layer of T91 high temperature superheater tube and the distribution of alloy elements in the oxide layer will present obvious proliferation, migration and enrichment phenomenon. Two different mechanisms (steam oxidation mechanism and oxygen oxidation mechanism) will exercise different influences on the structure and protective properties of the oxide layer: when steam contained dissolved oxygen, the oxide layer will be peroxidated by steam and the structure of oxide layer will be broken; When the tube was over-temperature operating, the oxide layer will be oxidated by oxygen.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have