Abstract
Transport phenomena occur frequently in industrial problems. Most of the turbulent transport properties can be directly associated with the turbulent energy dissipation rate; hence it is a very significant parameter in the design of chemical processing equipment. To develop a better chemical processing equipment design, a thorough knowledge of the effect flow structure on local turbulence parameters like turbulent kinetic energy, eddy diffusivity and the energy dissipation rate are required. Turbulence is heterogeneous in most of the process equipment. Hence, the use of spatial average energy dissipation rate causes error in modelling of turbulent transport processes. In this present work, particle image velocimetry (PIV) is used to obtain the energy spectrum from grid generated homogeneous turbulence velocity data. The model of energy spectrum given by Kang et al. (2003) has been fitted to this energy spectrum using energy dissipation rate. A different approach, based on a third order structure function and velocity gradient technique has been used to compute the energy dissipation rate. The model predictions have been verified by experimental PIV velocity data from oscillating grid apparatus.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have