Abstract

Development of a comprehensive reactor model is of paramount importance for design and scale-up of methanol-to-olefins (MTO) process in a dual fluidized bed reactor (DFB). These models must integrate suitable reaction kinetic expressions with hydrodynamic models properly descriptive of gas-solid contact in fluidized bed reactors. In this modeling study, our previously developed kinetic models of MTO fluidized bed reactor and regenerator are coupled with overall mass, energy and pressure balances to ensure smooth circulation of catalyst particles between the two fluidized beds. This integrated model was then applied to determine geometric dimensions of a demo-scale MTO DFB configuration and to obtain the mass distribution of catalyst particles throughout the entire system including the pipes connecting the two reactors. Our model is capable of being integrated into simulation software such as Aspen Plus for plant-wide optimization and scale-up studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call