Abstract
The aim of this study was to characterize brain dynamics during an auditory oddball task. For this purpose, a measure of the non-stationarity of a given time-frequency representation (TFR) was applied to electroencephalographic (EEG) signals. EEG activity was acquired from 20 schizophrenic (SCH) patients and 20 healthy controls while they underwent a three-stimulus auditory oddball task. The Degree of Stationarity (DS), a measure of the non-stationarity of the TFR, was computed using the continuous wavelet transform. DS was calculated for both the baseline [-300 0] ms and active task [150 550] ms windows of a P300 auditory oddball task. Results showed a statistically significant increase (p<;0.05) in non-stationarity for controls during the cognitive task in the central region, while less widespread statistically significant differences were obtained for SCH patients, especially in the beta-2 and gamma bands. Our findings support the relevance of DS as a means to study cerebral processing in SCH. Furthermore, the lack of statistically significant changes in DS for SCH patients suggests an abnormal reorganization of neural dynamics during an oddball task.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have