Abstract

Dilatometric studies assisted by high-temperature laser scanning confocal microscopy provide a comprehensive experimental picture with regard to cyclic austenite-to-ferrite transformations in Fe–C alloys. The validity range for the sharp interface and effective mobility approach is identified by comparing modelling results with calculations based on experiments. The interface velocity for the austenite-to-ferrite transformation in pure iron is exclusively controlled by the intrinsic interface mobility conforming to the upper boundary of mobilities. The austenite-to-ferrite transformation in Fe–C alloys under conventional cooling and heating conditions is primarily controlled by carbon diffusion in austenite. The lower boundary of the temperature-dependent interface mobility has been established for an Fe–C alloy over a wide range of temperatures during cycling transformation. Austenite-to-ferrite transformations in Fe–C–X alloys are characterized by still lower effective mobilities depending on both temperature and composition, because substitutional elements X give rise to a solute drag effect. An estimate for the effective mobility valid for the austenite-to-ferrite transformation in lean Fe–C–Mn alloys is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.