Abstract
We present an analytical model able to explain the optical signal recorded during our experimental approach curves in the infrared at a wavelength λ = 10.6 μ m , with a home-made apertureless near-field scanning optical microscope ANSOM. This model uses classical electrodynamics to calculate the scattering cross section of the oscillating tip, considered as a dipole, and its dielectric image in the sample as a function of the tip–sample separation from the near-field to the far-field regime. The dipoles are placed in a non-uniform electric field because of the standing wave arising from the interference between the incident and the specular laser beams. We also added a background field coming from a scatterer on the surface in order to account for zeroing of the optical signal for particular tip-sample separation and interference patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.